快捷搜索:

会成云计算,正酝酿一场改写云总括以后的沙暴

日期:2019-06-25编辑作者:澳门新葡8455手机版

但是,不管是哪一类,其最终应用和落地,皆离不开云计算。

比如自动驾驶领域,辅助驾驶系统如果在云端计算,设备端采集到数据后上传,计算完成后再返回终端,这样会不可避免地带来一定延时,而在驾驶场景中,这种延时意味着危险系数的提高。

根据维基百科的解释,“边缘计算”是一种分散式计算的架构,将应用程序、数据资料与服务的计算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘计算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。

传统云计算的优势在于,服务器存储的数据量大、计算准确性高、计算能力强,通常用于单次、不连续的计算任务请求。

“这是一场由互联网边缘发迹的革命。Google、Amazon、BAT等重量级科技巨头玩家,此前早已盯准了云端的超级赛道。随着AI和分布式计算的发展,另一场革命风暴在边缘开始酝酿。”

这时候就需要一个大容量的“容器”,而这个是边缘计算所没有的。在这个容器中,这些数据将被用于AI算法训练、用户个性化功能塑造等等,这些都是非实时需求,之后再传输给终端设备,从而进一步提升服务质量。

但与云端智能不同的是,嵌入式AI无需将数据上传到BAT或第三方数据中心,在边缘侧、本地设备端终端即可进行实时环境感知、深度学习、人机交互、决策控制等相关算法解决问题。

运营商:主要在移动边缘计算市场进行部署,在移动网边缘提供提服务环境和云计算能力。他们或是利用移动边缘计算进行内容本地分流业务,或是将业务处理下沉到最贴近用户的基站进行边缘数据处理等等。

对于AI应用来说,“端 云”的趋势已经非常明确,一些计算压力可以由终端设备分担,提供非常快的即时响应能力。当更多数据汇聚到云端,使得到云端AI具备大规模数据挖掘的能力,“云 端”则是更优的AI组合方案,两者不可偏废。

据IDC的数据显示,到2020年,将有超过500亿的终端和设备接入网络,而这些设备中有超过半数的数据需要在网络边缘侧分析、处理与储存,整个边缘计算的市场将会超过万亿级别,市场体量不可小觑。

比如Face 提供API接口的人脸识别云服务、科大讯飞语音识别云服务、图普科技图像内容审查云服务等,这些都需要把计算任务通过网络上传云端,云端计算完成后再把结果传回本地。

2、网络传输依赖性大,隐私安全令人担忧。基于云计算,我们需要把原始数据上传至云端进行处理,然后反馈给设备端,这一过程的实现,需要依赖网络。过程中,一旦有黑客拦截,用户安全隐私的保护就成了一个大问题。另外,若是遇到断网等情况,即使强大如云计算,太过依赖网络传输的它也将面临“巧妇难为无米之炊”的窘境。

在传统的云架构下,AI大多依靠云端联网和数据中心实现数据的存储和计算。然而,传统以云为中心的构架方式并非在任何情况下都是最理想的解决方案,比如对信息安全的担忧以及功耗对产品设计带来的挑战等。

目前,在边缘计算这一块,主要有4类玩家,分别是运营商、设备商、云服务商和CDN服务商。

不过,这并不意味着嵌入式AI将代替云计算。在云、管、端三者的角色中,云计算侧重于云,实现的是最终数据分析与应用的场所,而嵌入式AI则强化了设备端的重要性,满足了实时性数据分析和智能化处理需求,也更加安全和高效。

更为通俗地说,“云计算”是高高在上的。当设备端完成数据采集和指令接收,它们需要通过网络走上云端,后者会基于此作出判断,继而将结果再通过网络“告知”设备端。

如今,嵌入式AI解决方案仅仅迈出了一小步,还有很多地方需要探索和完善,这需要打通包括算法、芯片、数据、应用、终端等在内的产业链上下游各个环节,通过多方参与协同努力,才有可能看到AI真正走入寻常百姓家的一天。

其实不然,“终端计算”意味着终端要自己负责所有的计算,就像云计算出现之前的计算机,不管是数据的采集、计算、输出和存储,均由计算机在本地设备内一手操作。

未来的机器学习、深度学习会在云端和终端协调发展,不一定所有AI都要在云里实现。

与东华软件、AWS、京东金融、饿了么四位大咖探讨精准运维!

如果将AI的算法放置于本地,意味着原来CPU架构可能要上升,也有可能会想要加一些单独处理的单元。

边缘计算,不会取代也离不开云计算

在通用和垂直AI领域,巨头和创业企业都有各自的优势和机会。在智能化通用技术领域,由于AI所需的软件算法解决方案超出了传统芯片公司的边界,Intel、NVIDIA这样更具人才、资源和科研资源的巨头企业具备更强优势。

边缘计算为什么会兴起?因为数据太多了,云计算处理不过来,所以要分开处理。这时候,分布在各个节点的边缘计算将负责自己范围内的数据计算和存储工作。而对于应用场景来说,这还远远不够。

此外,另一挑战就是功耗,设备端大量采用电池供电,比如智能移动设备、新能源汽车等都对设备功耗提出了越来越高的要求。

以智能家居场景为例。基于边缘计算,当用户发出指令,相关原始数据不必再上传云端进行处理,具备计算能力的设备端完全能够自行处理,并实时反馈。简单来说,云计算处理的是那些非实时、长周期数据的大数据分析,而边缘计算更适合本地业务的数据实时处理与执行。

但在深度学习这类对专业要求更高的领域,像地平线、寒武纪这样的创业企业更有机会。

边缘计算,云计算之后的“新晋网红”

基于此,未来AI技术的发展将是两种趋势:通用和垂直。

CDN服务商:CDN是构建在网络之上的内容分发网络,依靠部署在各地的边缘服务器,让用户更快获取内容等等,其天生就有着“边缘属性”。眼下,智能化需求推动其向边缘计算靠拢,只需经过改造,其原有的节点就可升级为具备计算、存储、传输、安全功能的边缘计算节点。

随着技术的发展,一个巨大的机会正在远离传统数据中心的互联网边缘产生——嵌入式AI正受到越来越广泛的重视,未来其发展将使距离用户“最后一公里”的设备端具有更高智能。

  9月15日技术沙龙

随着网络带宽的提升和技术的升级,云计算以更出色的成本优势又逐渐回到了人们的视野。

原标题:科技新网红边缘计算 会成云计算“终结者”吗?

所谓“嵌入式AI”,实则是一种本地计算,又称边缘计算。其和云计算类似,都是处理大数据的计算运行方式。

“计算正从中央走向边缘”、“计算边缘化”……近日来,在大大小小各类有关人工智能的论坛或峰会上,我们或多或少的听见以上言论,其中的关键点只有一个——边缘计算。围绕这个问题,看看这些从业者们给出的解答。

在AI领域,很多应用场景都需要在本地终端进行计算,比如机器人、无人机、汽车以及手机等。

关于“边缘计算”的热议是近一两年才慢慢开始的,但它并不是一个“新词汇”。早在2003年的时候,IBM就曾与CDN服务商AKAMAI合作过“边缘计算”。

曾有科学家预言,人类只要有五台超级计算机就可以满足全人类的计算需求。一些公司也曾经推出过网络计算机,但因为网络传输能力和任务响应时间等问题,个人计算机和本地服务器在很长时间内还是占据了主流。

本文由澳门新葡8455手机版发布于澳门新葡8455手机版,转载请注明出处:会成云计算,正酝酿一场改写云总括以后的沙暴

关键词:

【澳门新葡8455手机版】2018丨解读微软亚洲研究院

原标题:NIPS 2018丨解读微软亚洲研究院10篇入选论文 近日,由国际计算语言学协会ACL(The Association for ComputationalLing...

详细>>

南洋理工科物艺术学家把量子门,加州Davis分校物

原标题:量子计算新突破!耶鲁科学家把量子门“传送”了 原标题:耶鲁科学家成功在两量子比特间“传送”量子门...

详细>>

专注量子点材料的,潮流家电网

原标题:纳晶科学技术:专注量子点材质的“拓荒者” 111月十八日,一而再了两年的量子点展现本领大研究,终于迎...

详细>>

澳门新葡8455手机版加快无人开车反应速度,有助

原标题:新加坡国立研究开发新型AI录像头 有助加速无人开车车反应速度 据韩媒报纸发表,俄亥俄州立大学新研究开...

详细>>